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ABSTRACT: Several members of the recently reported peroxy
chamigrane family of natural products were synthesized via a
distereoselective route with a novel facial-selective epoxidation of
a spiroundecadiene, a facile epoxide rearrangement, and a
Co(II)-mediated silylperoxidation as the key steps. Adaptation of
the diastereoselective route to an enantioselective one is also
illustrated.

The very recently reported1 chamigrane/norchamigrane
endoperoxides (exemplified in Figure 1) represent a new

family of natural products. These sesquiterpenoids were
isolated from fungi Steccherinum ochraceum, Xylocarpus
granatum, Talaromyces f lavus, and Pseudolagarobasidium
acaciicola, respectively. Their planar structures along with the
relative configurations were established by extensive spectro-
scopic analyses and (in the cases of 1, 2, and 5) single-crystal X-
ray crystallography. With the aid of copper radiation, the
absolute configurations for talaperoxides A and B as well as

steperoxide B/merulin A (1, 2 and 5) were successfully
determined.1d

Preliminary biological tests have showed that some of the
above-mentioned peroxy chamigranoids possess activities
against human breast,1b,d colon,1b hepatoma,1d cervical,1d and
prostatic1d cancer cell lines. The potential of these interesting
compounds in biomedical studies along with their novel peroxy
functionality-containing spiro/bridged/fused ring system
prompted us to perform a synthetic study. Here are the
primary results.
Although the molecular sizes of the peroxy chamigranoids

seem unpretentious and thus tend to belie the difficulty of their
synthesis, challenges do exist, mainly stemming from the
construction of three contiguous2 quaternary carbon centers
embedded in multicyclic frameworks, especially in the presence
of a troublesome peroxy functionality; many of our explorations
were frustrated before finally a route was successful.
The eventual approach emerged (Scheme 1) with elabo-

ration of methyl geranate into cyclohexene carboxylate 12 via
alkylation, isomerization, and cyclization following similar
transformations reported3 by Weyerstahl.4 Reduction of 12
with DIBAL-H afforded alcohol 13 smoothly, but the attempts
to acquire the corresponding iodide (a potentially suitable
precursor for chain extension) led to ring-expansion product
14. After many potentially applicable alternatives were tested,
the chain elongation finally was most satisfactorily achieved by
conversion of 13 into aldehyde 15 followed by one-carbon
homologation and olefination to give triene 17.
A ring-closing metathesis was then performed on 17

(Scheme 2) to deliver norchamigrene (±)-20. Exposure of
this diene to m-CPBA led to the very unstable epoxide (±)-21
as a single diastereomer.5 Subsequent attempts to install a
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Figure 1. Structures for 1−8 in the literature along with the atom
numbering of the parent core chamigrane (boxed).
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hydroperoxyl group onto (±)-21 by PMA (phosphomolybdic
acid)-mediated perhydrolysis6 as initially planned was un-
successful, leading predominantly to unexpected (±)-22 and
22′ in a nearly 1:1 ratio. However, exposure of (±)-22 to O2/
Co(acac)2/Et3SiH

7 very gratifyingly provided a mixture of
23a−c,8 providing the first entry (to our knowledge) to the
target ring system.
As access to adequate amounts of (±)-22 was a prerequisite

for continuation of the synthesis, we next examined the
isomerization9 of (±)-21 to (±)-22 under different conditions.
The results were very pleasing because the desired trans-
formation could be satisfactorily achieved without recourse to
any expensive reagents and/or tedious operation. Thus, by
adding a solution of concd HCl in MeOH to a solution of
(±)-21 in CH2Cl2, the desired allylic alcohol 22 was formed in
87% yield together with only negligible amounts of aldehyde
22′.
The secured supply of (±)-22 enabled us to examine the Co-

mediated peroxidation more closely. It was then found that
direct hydrolysis of the mixture of 23b,c (difficult to separate
from each other) followed by Me2S reduction could afford
(±)-8 (steperoxide C) along with its C-3 epimer 23a.
Alternatively, a Swern oxidation of isolated 23b (the major
component of the peroxidation, 45% from (±)-22) led to
ketone 24, which upon removal of the TES group and
reduction of the −OOH group gave (±)-25 (C-3 epi-
steperoxide B/merulin A) in 91% yield. If the hydrolyzed
crude mixture of 23a−c was directly subjected to Me2S
reduction and Swern oxidation, (±)-3 (talaperoxide C) could
be obtained in 49% overall yield (from (±)-22).
Carefully controlled reduction of 3 with NaBH4/MeOH at 0

°C (Scheme 3) yielded steperoxide B (±)-5 in 78% yield, along

with 10% of 26. Acetylation of isolated 5 resulted in
talaperoxide A (±)-1. Alternatively, treatment of (±)-3 with
Ph3PMeBr/NaHMDS led to exocyclic alkene 27 in 56% yield,
which could be further converted into merulin B (±)-6 by a
standard dihydroxylation. Upon exposure of (±)-3 to CH2
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CHMgBr, the vinyl group added exclusively from the
unobstructed face, leading to 28 in 80% yield. Ozonolysis of
alkene 28 followed by sequential reduction the intermediate
ozonide and the aldehyde with Me2S and Me2S·BH3,
respectively, led to merulin D (±)-7.
The above results showed that the absolute configurations of

the end products peroxy chamigranoids were decided by the
configuration of the spiro stereogenic center; the corresponding
optically active compounds would be also attainable if optically
active 20 was used. Stoltz and co-workers have developed a
straightforward access to such species in their synthesis10a of α-
chamigrene. Employing that elegant method10c for constructing
the enantioenriched spiro-stereogenic center, we next synthe-
sized (R)-20 as shown in Scheme 4.

Conversion of 29 all the way to 35 was achieved in a fashion
similar to that reported by Stoltz, but with slight modification;
the alkylation of 29 was done with a triflate instead of an iodide
as in the original protocol10a because the latter led to very low
yields despite prolonged time and higher temperatures. The
quaternary center-generation step was then carried out in the
presence of Pd(dmdba)2 with 3211 as the chiral ligand. The
resulting 33 was converted first into spirocycle 34 and then 35
in a fashion similar to that in the literature.
Subsequent removal of the carbonyl group in 35 was realized

via NaBH4/CeCl3 (Luche) reduction followed by deoxygena-
tion with Et3SiH/CF3CO2H.

12 Although many similar proto-
cols using other acids (such as BF3·Et2O and AcOH) were also
known, in the particular system involved in this work

CF3CO2H gave the best result. Compared with the
thioketalization−desulfurization procedure in the original
report, the present sequence for transforming 35 into (R)-20
is experimentally more convenient and better yielding.
Using the optically active 20 as the substrate, the remaining

steps were performed as described in the racemic synthesis to
deliver the antipodes of natural 1, 3, 5, 6, 7, and 8 in the same
yields as reported for their racemic counterparts. All of them
showed spectroscopic data consistent with those reported for
the corresponding natural products. Comparison of the signs
for the optical rotations for the latter five compounds with
those for their natural counterparts also unambiguously proved
that the absolute configurations for the natural 3, 6, 7, and 8 are
indeed as depicted in Figure 1.
In brief, the peroxy bridge-containing ring system of the

chamigrane endoperoxide family of natural products is
synthetically accessed for the first time (to our knowledge).
The (in a sense) protecting-group-free13 route to talaperoxides
A and C, merulins A, B, and D, as well as steperoxide C14

developed in this work featured the use of a novel facial
selective epoxidation of a spirocyclic diene, a clean rearrange-
ment of the epoxide to allylol, and a Co(II)-mediated
silylperoxidation as the key steps. The absence15 of any
heteroatoms or additional stereogenic centers in the spirocyclic
diene to differentiate the two faces of the reacting C−C double
bond in the epoxidation and the optimal results observed with
HCl/MeOH16 (among cheapest reagents) are particularly
noteworthy. The highly selective clean ring expansion leading
to the seven-membered triene 14 is also of interest, though not
exploited in this work. With the aid of the Stoltz’s method
(with modifications), the diastereoselective route can also be
rendered enantioselective. Finally, the facility of the key steps
perhaps also lends some support for the hypothesis of the
biosynthetic1d routes of these endoperoxides.
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